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I.  Introduction 
This is an early draft which collects the gains and transfer functions of the electronic modules that 

implement the Booster LLRF control.  Future additions to this document will include a representation of 

the Booster beam dynamics.  This will describe the relationships between jRF voltage and phase, 

bending magnet magnetic field, beam momentum, and beam radial position. 

The end goal is to understand and model the Booster and the LLRF controls sufficiently that 

modifications can be made to the LLRF controls with confidence that we will have not only a working 

system when we are done, but also and improved system. 

  



 

II. The Acceleration Phase Lock Loop 
The Acceleration Phase Lock Loop measures the phase difference between the Booster beam bunch 

phase and the phase of the LLRF Digital Frequency Source (DFS) VXI module.  The phase difference 

adjusts the DFS frequency output to regulate this phase difference.  A block diagram of this phase-lock-

loop is given in Figure II.1 

II.1  The Phase Detector 

The Fast Phase Detector provides a voltage output proportional to the phase difference between the RF 

sine wave voltage generated from the beam pickup and the “delayed” LLRF reference sine wave.  The 

output is {-10 to +10 Volts} � {0, 180 degrees}.  This give us the following: 

�� � 0.11 �	
��
����� � 6.37 �	
��

������ Eq II.1 

The phase detector has a -3dB low-pass roll off at 1 MHz.  This gives the full phase detector transfer 

function as: 

����� � �
� · �� ·   .!"#$�%&

 .!"#$�%& ' � � (%.%!#$�%&
� � .!"#$�%& ' ��   �	
��

������ Eq II.2 

Neglecting the 1 MHz roll off we get: 

�)���� �  .#*
�   �	
��

������ Eq II.3 

 

II.2  The Loop Filter 

The PLL loop filter used is a Lag-Lead type.  Circuit analysis of the Detector Mode Control module results 

in the following transfer function between the input and output voltages. 

����� � %.�#�·���." +$�%, ' ��
��.% "$�%, ' ��   �	
���	
�  Eq II.4 
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II.3  The Digital Frequency Source VXI Module 

The Digital Frequency Source (DFS) provides the LLRF reference sine wave that drives the voltage in the  

Booster accelerating cavities.  The signal is produced digitally using a Stanford Telecom, STEL-2273A, 

direct digital synthesizer board (DDS).  This is mainly a high speed, 8 bit DAC driven by a numerically 

controlled oscillator ASIC.  The output of the DDS is controlled by writing Frequency Control Words from 

the DSP processor on the VXI module.  The desired frequency is determined by a pre-defined frequency 

curve plus the error correction from the phase detector.  The phase detector voltage is digitized by an 

Analog Devices AD872A, 12-Bit, 10 MSPS A/D Converter.  A more detailed block diagram of the DFS VXI 

Module is given in Figure II.3.2. 

From the information in Figure II.3.2 we can derive the overall gain and delay of the DFS. 

��-. � 0.1 �	
��	
� · 2048 2����	
� · 256 · 0.133877 452�� � 7019 45�	
� Eq II.5 

 

�!��� � ��-. · 78%.#($�%9&·�  Eq II.6 

 

II.4  The Acceleration Phase Loop Analysis 

II.4.1  Analysis as a Sampled Data System 

The phase error input to the DFS VXI module is digitized every 0.1 µs.  The output frequency is updated 

every 1.0 µs.  These two sampling instances are not synchronized in this module, but with good 

approximation we should be able to analyze this control loop as a “sampled data system” with a 

sampling period of 1.0 µs.  A sampled data system is one having both continuous signals and discrete, 

sampled, signals. 

The analysis of sampled data systems is covered in nearly every text with a chapter on digital control [1], 

[2].  The analysis allows the designed to arrive at a discrete-time transfer function with which digital 

control methods and analyses can be applied.  However given the location of the sampler in this system 

we are not able to arrive at a discrete-time transfer function.  This situation is described in the 

textbooks. 

Just for the academics the analysis is worked through as far as it will go.  You will not miss much if you 

skip to the next section. 

The block diagram for our sampled data system is given in Figure II.4.1.1.  Here we include the sampling 

switch and the contribution to the transfer function of the DFS by the addition of a sample and hold. 
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We define our continuous signals from the block diagram. 

 :��� � 78;�·� · <2��� =  >���� · <�?��� 
 @��� � A���� · :��� 
 <�?��� � @)��� · A!��� 
Going to the sampled version of the signals we have 

 :)��� � B78;�·� · <2���C) =  B>���� · <�?���C) 
 @)��� � BA���� · :���C) 
 <�?)��� � B@)��� · A!���C) � @)��� · A!)��� 
Solve for @). 

@)��� � DA���� · E78;�·� · <2��� =  >���� · <�?���FG) 
@)��� � BA���� · 78;�·� · <2���C) = BA���� · >���� · <�?���C) 
@)��� � BA���� · 78;�·� · <2���C) = BA���� · >���� · @)��� · A!���C) 
@)��� � BA���� · 78;�·� · <2���C) = BA���� · >���� · A!���C) · @)��� 
@)��� � BA���� · 78;�·� · <2���C)1 H BA���� · >���� · A!���C) 
Substitute @) into the equation for <�?)���. 
<�?)��� � A!)��� · BA���� · 78;�·� · <2���C)1 H BA���� · >���� · A!���C)  

We would want to have a transfer function in the form of <�?)���/<2)���.  However <2)��� cannot be 

separated out in the equation for <�?)��� above.  Oh what fun we could have had if we could have 

gotten a discrete transfer function.  The explanation as to why we cannot get what we want is best 

stated by [1]. 

This system displays an important fact that all our facile manipulations 

of samples may cause us to neglect:  a sampled data system is time 

varying.  The response depends on the time relative to the sampling 

instant at which the signal is applied.  Only when the input samples 

alone are required to generate the output samples can we obtain a 

transfer function. 



The problem with our configuration is that t

at the sampling instance, but it depends on the value of 

values of  through (

II.4.2  Analysis as a Continuous Time System

With little justification other than to say that the 1 MHz sampling rate is more than 100 times the 

highest frequency component of our phase error signal, I will proceed to analyze the system as if it were 

not sampled.   

Figure II.4.2.1  The continuous time system block diagram.

Given the block diagram in Figure II.4.2.1 our transfer function between the beam frequency at the 

pickup and the output of the DFS is

We will use a (1,1) Pade’ approximation f

Let   

The problem with our configuration is that the output  does not depend on the values of 

at the sampling instance, but it depends on the value of  at the sampling instance AND previous 

). 

Analysis as a Continuous Time System 

With little justification other than to say that the 1 MHz sampling rate is more than 100 times the 

highest frequency component of our phase error signal, I will proceed to analyze the system as if it were 

Figure II.4.2.1  The continuous time system block diagram. 

Given the block diagram in Figure II.4.2.1 our transfer function between the beam frequency at the 

pickup and the output of the DFS is 

 

 

We will use a (1,1) Pade’ approximation for the delay terms. 

  ,  where   

does not depend on the values of  

at the sampling instance AND previous 

With little justification other than to say that the 1 MHz sampling rate is more than 100 times the 

highest frequency component of our phase error signal, I will proceed to analyze the system as if it were 

 

Given the block diagram in Figure II.4.2.1 our transfer function between the beam frequency at the 

 



 78�;#';!�·� � �8 JK·�� ' JK·�  ,  where  L! � ;#';!
!  

And also let ��? � �� · ��-. · 0.131 

 

<�?���<2��� � ��? · �11.869 $ 10# H  ��� · �1.068 $ 10# H  �� · 1 = L� · �1 H L� · �
1 H ��? · �11.869 $ 10# H  ��� · �1.068 $ 10# H  �� · 1 = L! · �1 H L! · �

 

 

<�?���<2��� � ��? · �11,869 H  �� · �1 = L� · �� · �1 H L! · ��� · �1,068 H  �� · �1 H L� · �� · �1 H L! · �� H ��? · �11,869 H  �� · �1 = L! · �� · �1 H L� · �� 
 

<�?���<2��� � N# · �# H N! · �! H N� · � H N%O( · �( H O# · �# H O! · �! H O� · � H O% 

Where, 

N% � ��? · 11,869 N� � ��? · E1 H  11,869 · �L! = L��F 

N! � ��? · E=11,869 · L� · L! H �L! = L��F N# � ��? · �=L� · L!� 
 

O% � ��? · 11,869 O� � E1,068 H ��? H 11,869 · ��? · �L� = L!�F O! � �1 H 1,068 · �L� H L!� H ��? · �L� = L!� = 11,869 · ��? · L� · L!� O# � ��L� H L!� H 1,068 · L� · L! = ��? · L� · L!� O( � �L� · L!�  
 

Recall for the existing system 

��? � �� · ��-. · 0.131 

�� � 6.37 �	
��
������  ��-. � 7019 45�	
�  

L� � ;#';�
!  , L! � ;#';!

!  

  



 

III. Radial Position Control Loop 

III.1 Radial Position Control Transfer Functions 

The Radial Position Controller, also called the LLRF Phase Controller (Dwg# 0331.00-ED-63397), 

compares a Beam Position Monitor (BPM) measurement to a signal representing the desired radial 

position offset.  From the difference or error between these two signals a phase shift in the LLRF 

reference to the RF cavities is determined.  As will be described later, this phase shift will result in 

regulating the beam radial position.  A block diagram of the Radial Position Controller is given in Figure 

III.1.1 and we will use this to describe the transfer function of the controller. 

The radius of the Booster is 74.47 Meters.  Marker: Check on actual effective Radius.  The center of the 

BPM is assumed to sit at this radius, and the +/- position of the beam measured by the BPM is actually 

the radial offset of the beam from the Booster radius.  This signal is referred to as RPOS in the 

documentation and in the ACNET control system.  It is a positive signal for radiuses larger than the 

Booster radius and negative for radiuses smaller.  The radial offset signal, ROFFF, has the opposite 

polarity.  ROFFF is a curve that is defined by the physicists tuning the Booster, varying through the 

acceleration cycle. 

Besides the error between RPOS and ROFFF, there are other system variables that drive the phase shift 

of the Low Level RF.  Get description from Bill 

The transfer functions and gains listed in the block diagram of Figure III.1.1 are the following 

 O��� � OPA AQRSTUVQW XWUY�Z7W @SY[V\QY �XO]� 
 �. � =2.5 ^/^ 

 �! � H5 ^/^ 

 _�N`a � ^UW\UbT7 �U\Y O7Vc77Y 1 UYR 0 S�\Yd UY N]532 

 �(��� � 8*.(""·��'!%e�%9& ��
��'#!�e�%9& ��  

 �f��� � 8%.(
��'  %e�%9& �� 

 

Letting �� � �. · �! · _�N`a, the transfer function between RPERR and the PSDRV output is 

Pg]_^����_P:__��� � =7.488 · �� · �1 H 20h108  ���1 H 321h108  ��  

Pg]_^!���O]iX��� � =0.4�1 H 660h108  �� 
Pg]_^#���Njk2��� �   1.0 



Also describe the Phase Shifter Module here    Gain=9 degrees/Volt 
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III.2 Radial Position Control State Variable Representation 

As we advance with our modeling and analysis of our control system, we will find benefit in describing our 

systems using a state variable representation.  Transfer functions are quite useful in describing the dynamics of 

the electronics since these are linear time-invariant circuits (with the exception of RGAIN which in reality is 

implemented as a time varying curve).  However, once we begin to consider the accelerator beam dynamics we 

will want a representation of our dynamics that can model linear and non-linear systems, time-invariant and 

time varying, single variable and multi-variable systems in a unified manner.  This is where linear algebra and a 

state variable representation of our system can help. 

All modern controls text cover at least the basics of state variable analysis [2],[3].  To transform our set of 

transfer functions for the Radial Position Control into state variable form we will use a “Direct Decomposition” 

method using a signal flow graph to help visualize the transformation. 

We start with the relationship for the RPERR input. 

Pg]_^����_P:__��� � =7.488 · �� · �1 H 20h108  ���1 H 321h108  ��  

We will alter the transfer function so that it only has negative powers of �, and then multiply the numerator and 

denominator by a dummy variable k���. 
Pg]_^����_P:__��� � �=7.488� · �� · �8�  H �=7.488� · �� · �20h108 ��8� H 321h108 · k���k��� 

Using our dummy variable we can represent the numerator and the denominator separately. 

Pg]_^���� � �=7.488� · �� · ��8� · k����  H  �=7.488� · �� · �20h108 � · k��� 
and 

_P:__��� � �8� · k��� H  321 $ 108 · k��� 
or 

k��� � 1321 $ 108 · _P:__ = 1321 $ 108 · E�8� · k���F 

Figure III.2 gives the state diagram for these equations, [2]. 

 



Figure III.2 State Diagram of the transfer function between RPERR and PSDRV

 

From this state diagram we can assign time variables to the nodes giving us the foll

equations. 

Simplifying these equations we get 

 

Similarly we can find state variable expressions for the other transfer functions.

 

Figure III.2 State Diagram of the transfer function between RPERR and PSDRV
1 

. 

From this state diagram we can assign time variables to the nodes giving us the following state and output 

 

 

 

Similarly we can find state variable expressions for the other transfer functions. 

 

 

 

 

owing state and output 

 



Figure III.3  State diagram of the transfer function between BDOT and PSDRV

 

 

The final expression of our state variable equations in matrix form is

 

 

 

  

e transfer function between BDOT and PSDRV
2
 .  

 

 

The final expression of our state variable equations in matrix form is 

 

 

 



APPENDIX  A:  Units for Momentum, Magnetic Field and Radius 
 

l m̂n  $  Omn �  o·pmnK
�mn   

l · O · _ � q · r � P  

 

 

l · �O · _�BX7�TU · A7V7W�C �  

l · �O · _� s t7b7WA7V7W�^2 · A7V7W�v � 

l · �O · _� s^QTV · g7[QYRA7V7W�^2 · A7V7W�v � 

l · �O · _� w ^QTVA7V7W� g7[QYRx y � �O · _� w 7^A7V7W� g7[QYRx y 

�O · _� w 7^A7V7W� g7[QYRx y · z2.998h10"  A7V7W� g7[QYR⁄[ | · s A7^10 · 7^v � 

299.8 · �O · _� sA7^[ v � P sA7^[ v 
P sA7^[ v � 299.8 · OBX7�TUC · _BA7V7W�C 

 

  



APPENDIX  B:  Computing the Expected Magnetic Field 
Here we will make a comparison between what we ideally expect the magnetic field in the Booster bending 

magnets will be, versus B(t) derived from a measurement  of dB(t)/dt and a set of assumptions about the 

measurement. 

First recall from Appendix A our equation describing the relationship between momentum (P), the radius of 

orbit of the protons (R), and the bending magnetic field. 

O�V�BX7�TUC � P�V� }A7^[ ~
299.8 · _BA7V7W�C 

We also know that B(t) should have the following form. 

O�V� � O� H O! · �Q��2� · 15 · V� 
Where  

O� � O�0 �� H O�33.3 q��O! � O�0 �� =  O�33.3 q�� 
We can let R simply be the radius of the Booster and P(t=0 s) and P(t=33.3 ms) be determined by the expected 

beam energy  injection and extraction, respectively. 

P�V� · [ � ���:�V� H q��! = q�! 

For 

�:�0 �� � 401 A7^�:�33.3 q�� � 8000 A7^q� � 938.272 A7^  

We get 

P�0 �� � 955.7 A7^/[P�33.3 q�� � 8888.9 A7^/[ 

And then 

O�0 �� � 0.0428 X7�TUO�33.3 q�� � 0.3981 X7�TU 

O�V� � 0.4409 = 0.3553 · �Q��2� · 15 · V� 
The question now is, how do we convert the measured voltage representing dB(t)/dt to arrive at a measured 

value of B(t).  From TM-405, “Booster Synchrotron” 1976 design report, we get that the injection current is 74 

Amps for an injection energy of 200 MeV.  The momentum in this case is 644.446 MeV/c, and from our equation 



with R=74.47 Meters, B(0 s) is 0.0289 Tesla.  Our conversion between Amps through the windings and the 

resulting magnetic field is 

�2 � 0.0289 X7�TU74 Nq�� � 0.39 $ 108#  X7�TUNq�  

PICK IT UP HERE:  DECIDE WHAT WE WANT TO REFERENCE TO GET AT THE TRUE Imin and Imax ? 
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